0%

ABC362E Count Arithmetic Subsequences

传送门

Solution

Fi,len,dF_{i,len, d} 表示以 aia_i 结尾,长度为 lenlen,公差为 dd 的等差数列数量。转移方程为

Fi,len,d=j=1i1Fj,len1,dF_{i,len,d}=\sum\limits_{j=1}^{i-1} F_{j,len-1,d}

其中 jj 要满足 aiaj=da_i-a_j=d

因为 dd 可能为负数,所以 dp 数组最后一维用 map。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 105, mod = 998244353;

ll n, a[N], ans[N];
map<ll, ll> f[N][N];

int main()
{
scanf("%lld", &n);
for (int i = 1; i <= n; i++) {
scanf("%lld", &a[i]);
for (int j = 1; j < i; j++) {
ll d = a[i] - a[j];
f[i][2][d] = (f[i][2][d] + 1) % mod;
}
for (auto &t : f[i][2])
ans[2] = (ans[2] + t.second) % mod;
}
ans[1] = n;
for (int i = 1; i <= n; i++) {
for (int l = 3; l <= i; l++) {
for (int j = 1; j < i; j++) {
ll d = a[i] - a[j];
f[i][l][d] = (f[i][l][d] + f[j][l - 1][d]) % mod;
}
for (auto &t : f[i][l])
ans[l] = (ans[l] + t.second) % mod;
}
}
for (int l = 1; l <= n; l++)
printf("%lld ", ans[l]);
return 0;
}